Fractional convexity maximum principle∗

نویسنده

  • Antonio Greco
چکیده

We construct an anisotropic, degenerate, fractional operator that nevertheless satisfies a strong form of the maximum principle. By applying such an operator to the concavity function associated to the solution of an equation involving the usual fractional Laplacian, we obtain a fractional form of the celebrated convexity maximum principle devised by Korevaar in the 80’s. Some applications are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H > 1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential eq...

متن کامل

Survey Paper Maximum Principle and Its Application for the Time-fractional Diffusion Equations

Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary In the paper, maximum principle for the generalized time-fractional diffusion equations including the multi-term diffusion equation and the diffusion equation of distributed order is formulated and discussed. In these equations, the time-fractional derivative is defined in the Caputo sense. In contrast to the Riemann...

متن کامل

Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations

The maximum principle for the space and time-space fractional partial differential equations is still an open problem. In this paper, we consider a multi-term time-space Riesz-Caputo fractional differential equations over an open bounded domain. A maximum principle for the equation is proved. The uniqueness and continuous dependence of the solution are derived. Using a fractional predictor-corr...

متن کامل

Higher-order symmetric duality for a class of multiobjective fractional programming problems

Correspondence: gaoyingimu@163. com Department of Mathematics, Chongqing Normal University, Chongqing 400047, China Abstract In this paper, a pair of nondifferentiable multiobjective fractional programming problems is formulated. For a differentiable function, we introduce the definition of higher-order (F, a, r, d)-convexity, which extends some kinds of generalized convexity, such as second or...

متن کامل

A Fully Nonlinear Problem with Free Boundary in the Plane

We prove that bounded solutions to an overdetermined fully nonlinear free boundary problem in the plane are one dimensional. Our proof relies on maximum principle techniques and convexity arguments.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014